Example | LaTeX code | Result | |
---|---|---|---|
Polynomial | {tex}a^2+b^2=c^2{/tex} | {tex}a^2+b^2=c^2{/tex} | |
Quadratic formula | {tex}x={-b\pm\sqrt{b^2-4ac} \over 2a}}{/tex} | {tex}x={-b\pm\sqrt{b^2-4ac} \over 2a}}{/tex} | |
Tall parentheses and fractions | {tex}2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right){/tex} | {tex}2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right){/tex} | |
{tex}S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}{/tex} | {tex}S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}{/tex} | ||
Integrals | \int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy{/tex} | \int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy{/tex} | |
Summation | {tex}\sum_{m=1}^\infty \sum_{n=1}^\infty \frac{m^2\,n} {3^m\left(m \,3^n+n \,3^m\right)}{/tex} | {tex}\sum_{m=1}^\infty \sum_{n=1}^\infty \frac{m^2\,n} {3^m\left(m \,3^n+n \,3^m\right)}{/tex} | |
Differential equation | {tex}u'' + p(x)u' + q(x)u = f(x),\quad x>a{/tex} | {tex}u'' + p(x)u' + q(x)u = f(x),\quad x>a{/tex} | |
Complex numbers | {tex}|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z){/tex} | {tex}|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z){/tex} | |
Limits | {tex}\lim_{z\rightarrow z_0} f(z)=f(z_0){/tex} | {tex}\lim_{z\rightarrow z_0} f(z)=f(z_0){/tex} | |
Integration with limits and fractions | {tex}\int\limits_{ -\infty }^{a} \frac{e^{-(x-\mu)/s}} {s(1+e^{-(x-\mu)/s})^2} \,dx = {1 \over 1+e^{-(a-\mu)/s}}{/tex} | {tex}\int\limits_{ -\infty }^{a} \frac{e^{-(x-\mu)/s}} {s(1+e^{-(x-\mu)/s})^2} \,dx = {1 \over 1+e^{-(a-\mu)/s}}{/tex} | |
Continuation and cases | {tex}f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases}{/tex} | {tex}f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases}{/tex} | |
Prefixed subscript | {tex}{}_pF_q(a_1, \dots, a_p;c_1, \dots, c_q;z) \\ ~\qquad = \sum_{n=0}^\infty \frac {(a_1)_n \cdots (a_p)_n}{(c_1)_n \cdots (c_q)_n} \frac {z^n}{n!}{/tex} | {tex}{}_pF_q(a_1, \dots, a_p;c_1, \dots, c_q;z) \\ ~\qquad = \sum_{n=0}^\infty \frac {(a_1)_n \cdots (a_p)_n}{(c_1)_n \cdots (c_q)_n} \frac {z^n}{n!}{/tex} |
Tuesday, March 15, 2011
Latex
Tuesday, March 1, 2011
Asymptotic growth of function (Comparision)
Rules for comparing asymptotic growth of functions
1)f(n) < g(n) if
2) if f(n) < g(n) then 1/g(n) < 1/f(n)
Ordering functions according to their asymptotic growth
1) nα < nβ
whenever β>α
Examples
n1.2 < n2
n0.02 < n0.2
2) 1 < log(log n) < log n < nε < nC < nlog n < Cn < nn < CCn
where 0 < ε < 1 and C > 1
because f(n)/g(n) --> infinity as n --> infinity for each f(n) < g(n)
Examples
nlog n < 2n
log n < n0.0001
nn < 22n
3)Using the reciprocal rule in above hierarchy we can deduce that
1/nε < 1 / log n
1/nε < 1
and so on
4) log n! < n log n
5)2n < en < n! < 22n
Reference
Concrete Mathematics, Graham Knuth Pattasnik
Algorithms, Cormen Leiserson Rivest
1)f(n) < g(n) if
2) if f(n) < g(n) then 1/g(n) < 1/f(n)
Ordering functions according to their asymptotic growth
1) nα < nβ
whenever β>α
Examples
n1.2 < n2
n0.02 < n0.2
2) 1 < log(log n) < log n < nε < nC < nlog n < Cn < nn < CCn
because f(n)/g(n) --> infinity as n --> infinity for each f(n) < g(n)
Examples
nlog n < 2n
log n < n0.0001
nn < 22n
3)Using the reciprocal rule in above hierarchy we can deduce that
1/nε < 1 / log n
1/nε < 1
and so on
4) log n! < n log n
5)2n < en < n! < 22n
Reference
Concrete Mathematics, Graham Knuth Pattasnik
Algorithms, Cormen Leiserson Rivest
Subscribe to:
Posts (Atom)